If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13p^2-3p-9=0
a = 13; b = -3; c = -9;
Δ = b2-4ac
Δ = -32-4·13·(-9)
Δ = 477
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{477}=\sqrt{9*53}=\sqrt{9}*\sqrt{53}=3\sqrt{53}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{53}}{2*13}=\frac{3-3\sqrt{53}}{26} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{53}}{2*13}=\frac{3+3\sqrt{53}}{26} $
| 4x+3-1=24 | | y+23=64 | | 1x+3x1x=30 | | 2x-18=-8+22 | | 6-2h=14 | | 75x+225=3225 | | 10-m=3m | | -10+2x+20=-4 | | 8-10x=-102 | | 4x12=-4 | | 38=3a^2-10 | | -17=6x-23 | | -17=6x-32 | | 7-4.3q=-10 | | 4x+14=6x–4 | | –4(v–4)=20 | | 3x+25°=5x-60° | | -4-3x=32 | | 0.4x-2=-7.6 | | 25*x=70 | | 1/3x(492-166)= | | 5t–12=18 | | 8(10−x)=2x | | 9+p=35 | | x³-3x²-9x+1=0 | | 6÷(x-3)-12÷(x+1)=1 | | 12a+36=72 | | 6÷x-3-12÷x+1=1 | | 77-y=168 | | 90-x=197 | | x+19=29-4 | | 4x20=5x+10 |